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About the spacing functions of the three matrix ensembles
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Received 8 October 1996

Abstract. Three ensembles of random matrices have been extensively studied, orthogonal,
unitary and symplectic, characterized by a parameterβ taking values 1, 2 and 4. The probability
Eβ(r, t) that a randomly chosen interval of length 2t contains exactlyr eigenvalues of such a
matrix can be expressed in terms of therth partial derivative of a Fredholm determinant. Using
this fact we give a new proof of some known relations betweenE1(r, t), E2(r, t) andE4(r, t),
as well as a relation between odd and even spheroidal functions.

1. Introduction

In the study of random matrices much attention has been given to three Gaussian ensembles
or three circular ensembles, named orthogonal, unitary and symplectic [1]. They are
characterized by a parameterβ taking the values 1, 2 and 4, respectively. The probability
Eβ(r, t) that a randomly chosen interval of length 2t contains exactlyr eigenvalues of a
random matrix taken from one of these ensembles can be expressed as [2]

Eβ(r, t) = 1

r!

(
− ∂
∂z

)r
Fβ(z, t)|z=1 (1.1)

Fβ(z, t) =
∞∏
j=0

(1− zλj ) (1.2)

whereλj = λj (t) are the eigenvalues of an integral equation

λf (x) =
∫ t

−t
K(β; x, y)f (y)dy (1.3)

with the kernels [2]

K(2; x, y) = S(x, y) (1.4)

K(1; x, y) =
[
S(x, y) D(x, y)

J (x, y) S(x, y)

]
(1.5)

K(4; x, y) =
[
S(2x, 2y) D(2x, 2y)
I (2x, 2y) S(2x, 2y)

]
. (1.6)

For β = 2, the kernel is simple, while forβ = 1 andβ = 4 the kernels are 2× 2 matrices
and the integral equation (1.3) is a set of two coupled equations.
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For β = 1 andβ = 4, the eigenvalues are doubly degenerate because the kernel is
self-dual in the quaternion sense [1]

KT(β; y, x) = −
[

0 1
−1 0

]
K(β; x, y)

[
0 1
−1 0

]
. (1.7)

In equation (1.2) the product is taken over distinct eigenvaluesλj .
In the limit of very large matrices one has

S(x, y) = sinπ(x − y)
π(x − y) (1.8)

D(x, y) = ∂

∂x
S(x, y) (1.9)

I (x, y) =
∫ ∞
−∞

ε(x − ξ)S(ξ, y)dξ (1.10)

J (x, y) = I (x, y)− ε(x − y) (1.11)

and

ε(x) =
{
+1/2 for x > 0

−1/2 for x < 0.
(1.12)

In the caseβ = 2, the solutions of equation (1.3) are either even or odd. They are also the
solutions of

λf (x) =
∫ t

−t
S±(x, y)f (y)dy (1.13)

with

S±(x, y) = 1
2[S(x, y)± S(x,−y)]. (1.14)

We will use an even (odd) index toλ when it corresponds to an even (odd) solution, and
write equation (1.2) as

F2(z, t) = F+(z, t)F−(z, t) (1.15)

F+(z, t) =
∞∏
i=0

(1− zλ2i ) (1.16)

F−(z, t) =
∞∏
i=0

(1− zλ2i+1). (1.17)

In the caseβ = 1 or β = 4, each component of any eigenfunction has a definite parity, and
the parities of the two components of an eigenfunction are opposite.

If one sets

E±(r, t) = 1

r!

(
− ∂
∂z

)r
F±(z, t)|z=1 (1.18)

or

F±(z, t) =
∞∑
r=0

(1− z)rE±(r, t) (1.19)

then one knows that [3]

E±(r, t) = E1(2r, t)+ E1(2r ∓ 1, t) r > 0 (1.20)

E4(r, t) = 1
2[E+(r, 2t)+ E−(r, 2t)] r > 0 (1.21)

(E1(−1, t) ≡ 0). We will present here a new proof of equations (1.20) and (1.21).
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Equation (1.8) and onwards have been written for very large matrices. They are the
limit when n → ∞ of the results forn × n matrices either from the Gaussian ensembles
or from the circular ensembles. For the case of finiten × n matrices from the circular
ensembles, equation (1.8) is replaced by [1]

S(θ, φ) = S(θ − φ) = 1

n

∑
p

eip(θ−φ) = sinn(θ − φ)/2
n sin(θ − φ)/2 (1.22)

and in all other equationsx, y andt are replaced byθ , φ andα, respectively. Instead of an
infinite number of eigenvalues we have a finite numbern of them. Forβ = 2, the number
of even (odd) eigenfunctions is [(n+1)/2] ([n/2]). The even (odd) eigenfunctions are also
the eigenfunctions ofS+(θ, φ) (S−(θ, φ)). In equation (1.22)p is summed over the values
−(n− 1)/2, −(n− 3)/2, . . . , (n− 3)/2, (n− 1)/2. Note thatS(θ, φ) depends only on the
differenceθ − φ, as indicated by the second expression in equation (1.22) above. Similarly
S(x, y) depends only onx − y.

It is somewhat convenient to argue whenn is finite and later take the limitn → ∞
while t = nα/2π , x = nθ/2π , y = nφ/2π are kept finite.

2. Relation between odd and even solutions of equation (1.13)

The derivatives of the eigenfunctions of equation (1.3) for the three casesβ = 1, β = 2
andβ = 4 can be expanded in terms of the eigenfunctions themselves for the caseβ = 2.
This can be seen directly from the integral equation for the finiten case, since the kernel
is a sum of separable functions involving exponentials. Thus

f ′2i+1(θ) =
∑
j

cij f2j (θ) f2i+1(θ) =
∑
j

cij

∫ θ

0
f2j (φ) dφ (2.1)

f ′2i (θ) =
∑
j

dij f2j+1(θ) f2i (θ) = f2i (0)+
∑
j

dij

∫ θ

0
f2j+1(φ) dφ. (2.2)

The kernelsS±(θ, φ) satisfy the obvious property
∂

∂θ
S±(θ, φ) = − ∂

∂φ
S∓(θ, φ) (2.3)

and have the spectral representations

S+(θ, φ) =
∑
i

λ2if2i (θ)f2i (φ) (2.4)

S−(θ, φ) =
∑
i

λ2i+1f2i+1(θ)f2i+1(φ) (2.5)

wherefj (θ) are normalized eigenfunctions of equation (1.13)∫ α

−α
fi(θ)fj (θ) dθ = δij . (2.6)

Differentiation of equation (1.13) and a partial integration gives

λ2i+1f
′
2i+1(θ) =

∂

∂θ

∫ α

−α
S−(θ, φ)f2i+1(φ) dφ

= −
∫ α

−α

∂

∂φ
S+(θ, φ)f2i+1(φ) dφ

= −2S+(θ, α)f2i+1(α)+
∫ α

−α
S+(θ, φ)f ′2i+1(φ) dφ (2.7)
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or using equations (2.1), (2.4) and (2.6),

λ2i+1

∑
j

cij f2j (θ) = −2f2i+1(α)
∑
j

λ2j f2j (θ)f2j (α)+
∑
j

cij λ2j f2j (θ). (2.8)

As f2j (θ) are linearly independent even functions, one has

cij = −2λ2j

λ2i+1− λ2j
f2j (α)f2i+1(α) (2.9)

and equation (2.1) can be written as

f2i+1(α) =
∑
j

cij

∫ α

0
f2j (φ) dφ

= f2i+1(α)
∑
j

−2λ2j

λ2i+1− λ2j
f2j (α)

∫ α

0
f2j (φ) dφ. (2.10)

Sincef2i+1(α) 6= 0 from equation (2.9), one has

1+
∑
j

2λ2j

λ2i+1− λ2j
f2j (α)

∫ α

0
f2j (φ) dφ = 0 (2.11)

for every i. Consider the rational function

G(z) = 1+
∑
j

zλ2j

1− zλ2j
f2j (α)

∫ α

−α
f2j (φ) dφ. (2.12)

This function has zeros atz = 1/λ2i+1 from equation (2.11), has poles atz = 1/λ2j and is
1 at z = 0. Therefore,

G(z) =
∏
j

(1− zλ2j+1)

(1− zλ2j )
(2.13)

i.e.
F−(z, α)
F+(z, α)

= 1+
∑
j

zλ2j

1− zλ2j
f2j (α)

∫ α

−α
f2j (φ) dφ. (2.14)

This is equation (A.16.6) of [1].
Starting with equation (2.2) one can similarly determine the coefficientsdij ,

dij = −2λ2j+1

λ2i − λ2j+1
f2i (α)f2j+1(α) (2.15)

and similarly,

f2i (α)

[
1+

∑
j

2λ2j+1

λ2i − λ2j+1
f2j+1(α)

∫ α

0
f2j+1(φ) dφ

]
= f2i (0). (2.16)

However, from equations (1.13) and (2.2),

λ2if2i (0) =
∫ α

−α
S+(0, φ)f2i (φ) dφ =

∫ α

−α
S(θ)f2i (θ) dθ

=
∫ α

−α
S(θ)

[
f2i (0)+

∑
j

dij

∫ θ

0
f2j+1(φ) dφ

]
dθ (2.17)

or, substituting fordij from equation (2.15),

(λ2i − 2I (α)) f2i (0) =
∑
j

−2λ2j+1

λ2i − λ2j+1
f2i (α)f2j+1(α)

∫ α

−α
dθ S(θ)

∫ θ

0
dφ f2j+1(φ) (2.18)
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where

2I (θ) =
∫ θ

−θ
S(φ) dφ =

∫ θ

−θ
S+(φ) dφ = 2

∫ θ

0
S(φ) dφ. (2.19)

Now a partial integration gives∫ α

−α
dθ S(θ)

∫ θ

0
dφ f2j+1(φ) = 2

∫ α

0
dθ S(θ)

∫ α

0
dφ f2j+1(φ)− 2

∫ α

0
dθ f2j+1(θ)

∫ θ

0
dφ S(φ)

=
∫ α

0
dθ f2j+1(θ)[2I (α)− 2I (θ)] (2.20)

so that from equations (2.16) and (2.18), removing the common factorf2i (α) and
rearranging,

λ2i − 2I (α)+
∑
j

2λ2j+1

λ2i − λ2j+1
f2j+1(α)

∫ α

0
dθ f2j+1(θ) [λ2i − 2I (θ)] dθ = 0. (2.21)

In other words, the function

1− 2zI (α)+
∑
j

2zλ2j+1

1− zλ2j+1
f2j+1(α)

∫ α

0
dθ f2j+1(θ)[1− 2zI (θ)] (2.22)

has zeros atz = 1/λ2i , has poles at 1/λ2j+1 and is 1 atz = 0, so that it is equal to
F+(z, α)/F−(z, α), i.e.

F+(z, α)
F−(z, α)

= 1− 2zI (α)+
∑
j

2zλ2j+1

1− zλ2j+1
f2j+1(α)

∫ α

0
dθ f2j+1(θ)[1− 2zI (θ)]. (2.23)

Equation (2.14) is simpler than (2.23) since instead of (2.19) one has∫ θ

−θ
S−(φ) dφ = 0. (2.24)

3. Relation betweenF1(z, t), F+(z, t) and F−(z, t)

As for β = 2 the even and odd solutions of equation (1.3) are also solutions of
equation (1.13), similarly forβ = 1, the solutions of equation (1.3) are also solutions
of

µ

[
ξ(θ)

η(θ)

]
=
∫ α

−α

[
S±(θ, φ) D∓(θ, φ)
J±(θ, φ) S∓(θ, φ)

] [
ξ(φ)

η(φ)

]
dφ (3.1)

with

S±(θ, φ) = 1
2[S(θ, φ)± S(θ,−φ)] (3.2)

D±(θ, φ) = 1
2 [D(θ, φ)±D(θ,−φ)] (3.3)

J±(θ, φ) = 1
2 [J (θ, φ)± J (θ,−φ)] . (3.4)

Similar to equation (2.3), we have

∂

∂θ
D±(θ, φ) = − ∂

∂φ
D∓(θ, φ) (3.5)

∂

∂θ
J±(θ, φ) = − ∂

∂φ
J∓(θ, φ). (3.6)



1248 M L Mehta and A Pandey

The kernelS+(θ, φ) (S−(θ, φ)) acting on any functiong(φ) selects the even (odd) part of
g and the result is an even (odd) function:∫ α

−α
S±(θ, φ)g(φ)dφ =

∫ α

−α
S±(θ, φ) 1

2[g(φ)± g(−φ)] dφ (3.7)

is an even (odd) function ofθ . Therefore, in the operator sense

S+ ◦ S− = S− ◦ S+ = 0. (3.8)

Similarly, D+(θ, φ) and J+(θ, φ) (D−(θ, φ) and J−(θ, φ)) acting on any functiong(φ)
selects the even (odd) part ofg and the result is an odd (even) function, so that

D+ ◦ J+ = D− ◦ J− = D− ◦ S+ = D+ ◦ S− = J+ ◦ S− = J− ◦ S+ = 0

J+ ◦D+ = J− ◦D− = S+ ◦D+ = S− ◦D− = S+ ◦ J+ = S− ◦ J− = 0 (3.9)

i.e.

σ+ ◦ σ− = σ− ◦ σ+ = 0 (3.10)

where

σ±(θ, φ) =
[
S±(θ, φ) D∓(θ, φ)
J±(θ, φ) S∓(θ, φ)

]
. (3.11)

The kernelsσ+ andσ− have the same set of eigenvalues, half of them being zero. In what
follows we will be concerned with only the non-zero eigenvalues.

Equation (3.1) written in full reads for the upper sign, for example,

µξ(θ) =
∫ α

−α
[S+(θ, φ)ξ(φ)+D−(θ, φ)η(φ)] dφ (3.12)

µη(θ) =
∫ α

−α
[J+(θ, φ)ξ(φ)+ S−(θ, φ)η(φ)] dφ. (3.13)

Differentiating equation (3.13) with respect toθ , and comparing with (3.12), one gets

xi(θ) = µ

µ− 1
η′(θ). (3.14)

Thus, ξ(θ) and η(θ) have opposite parities andξ(θ) is proportional to the derivative of
η(θ). With the upper (lower) sign in (3.1),ξ(θ) is even (odd) andη(θ) is odd (even).

Now from equation (2.3) and a partial integration,∫ α

−α
D−(θ, φ)η(φ)dφ = ∂

∂θ

∫ α

−α
S−(θ, φ)η(φ)dφ = −

∫ α

−α

∂

∂φ
S+(θ, φ)η(φ)dφ

= −2S+(θ, α)η(α)+
∫ α

−α
S+(θ, φ)η′(φ) dφ. (3.15)

For η(θ) an odd function, this gives with equations (3.12) and (3.14)

µ2

µ− 1
η′(θ) = −2S+(θ, α)η(α)+

(
µ

µ− 1
+ 1

)∫ α

−α
S+(θ, φ)η′(φ) dφ. (3.16)

Substituting the expansion ofη′(θ) in terms of thef2j (θ),

η′(θ) =
∑
i

cif2i (θ) η(θ) =
∑
i

ci

∫ θ

0
f2i (φ) dφ (3.17)

in equation (3.16), and using (2.4)(
µ2

µ− 1
− 2µ− 1

µ− 1
λ2i

)
ci + 2λ2if2i (α)

∑
j

cj

∫ α

0
f2j (φ) dφ = 0. (3.18)
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Therefore, the eigenvaluesµi are the roots of the algebraic equation

det

[ (
µ2− (2µ− 1)λ2i

)
δij + 2(µ− 1)λ2if2i (α)

∫ α

0
f2j (φ) dφ

]
= 0. (3.19)

The functionF1(z, α) is, therefore, obtained by substitutingµ = 1/z in the left-hand
side of this equation and multiplying by an appropriate power ofz to remove all its negative
powers,

F1(z, α) = det

[ (
1− (2z − z2)λ2i

)
δij + 2z(1− z)λ2if2i (α)

∫ α

0
f2j (φ) dφ

]
=
∏
i

(1− (2z − z2)λ2i )

[
1+

∑
j

2z(1− z)λ2j

1− (2z − z2)λ2j
f2j (α)

∫ α

0
f2j (φ) dφ

]
.

(3.20)

For the last equality note that

det
[
aiδij + bicj

] = det

[
1 cj
0 aiδij + bicj

]
= det

[
1 cj
−bi aiδij

]
=
∏
i

ai

(
1+

∑
j

bj cj

aj

)
. (3.21)

Now ∏
i

(
1− (2z − z2)λ2i

)= F+(2z − z2, α) (3.22)

while using relation (2.14)

1+ 2z(1− z)
∑
i

λ2i

1− (2z − z2)λ2i
f2i (α)

∫ α

0
f2i (φ) dφ

= 1

2− z
(

2− z + (1− z)
∑
i

(2z − z2)λ2i

1− (2z − z2)λ2i
f2i (α)

∫ α

−α
f2i (φ) dφ

)
= 1

2− z
(

1+ (1− z)F−(2z − z
2, α)

F+(2z − z2, α)

)
(3.23)

so that finally

(2− z)F1(z, α) = F+(2z − z2, α)+ (1− z)F−(2z − z2, α). (3.24)

This equation is equivalent to (1.20), since the left-hand side of equation (3.24) is

(2− z)F1(z, α)=
∑
r

(
(1− z)rE1(r, α)+ (1− z)r+1E1(r, α)

)
=
∑
r

(1− z)2r [E1(2r, α)+ E1(2r − 1, α)]

+
∑
r

(1− z)2r+1 [E1(2r, α)+ E1(2r + 1, α)] (3.25)

while on the right-hand side

F+(2z − z2, α)=
∑
r

(1− 2z + z2)rE+(r, α)

=
∑
r

(1− z)2rE+(r, α) (3.26)
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(1− z)F−(2z − z2, α)= (1− z)
∑
r

(1− 2z + z2)rE−(r, α)

=
∑
r

(1− z)2r+1E−(r, α). (3.27)

Comparing the various powers of(1− z), we get the equivalence of equations (1.20) and
(3.24).

One could have started with the lower sign in equation (3.1), and used equation (2.23)
to arrive at the same result.

4. Relation betweenF4(z, t) and F±(z, t)

For the symplectic ensemble we can again separateK(4; θ, φ) into even and odd parts,

K(4; θ, φ) = σ+(θ, φ)+ σ−(θ, φ) (4.1)

σ±(θ, φ) =
[
S±(2θ, 2φ) D∓(2θ, 2φ)
I±(2θ, 2φ) S∓(2θ, 2φ)

]
(4.2)

whereS±(θ, φ), D±(θ, φ) and I±(θ, φ) are given by equations (3.2), (3.3) and a similar
equation

I±(θ, φ) = 1
2[I (θ, φ)± I (θ,−φ)]. (4.3)

The eigenvalues of the integral equation (1.3) are again also the eigenvalues of an
integral equation with the kernel eitherσ+(θ, φ) or σ−(θ, φ) and the components of the
eigenfunctions have definite opposite parities. It is convenient to take 2θ and 2φ as new
variables and write the integral equation (1.3) as

µ

[
ξ(θ)

η(θ)

]
= 1

2

∫ 2α

−2α

[
S±(θ, φ) D∓(θ, φ)
I±(θ, φ) S∓(θ, φ)

] [
ξ(φ)

η(φ)

]
dφ. (4.4)

Following section 3 we find nowξ(θ) = η′(θ). The arguments proceed as in section 3;
equations corresponding to (3.18) and (3.19) are now

(µ− λ2i )ci + λ2if2i (2α)
∑
j

cj

∫ 2α

0
f2j (φ) dφ = 0 (4.5)

det

[
(µ− λ2i )δij + λ2if2i (2α)

∫ 2α

0
f2j (φ) dφ

]
=
∏
i

(µ− λ2i )

[
1+

∑
j

λ2j

1− λ2j
f2j (2α)

∫ 2α

0
f2j (φ) dφ

]
= 0 (4.6)

so that with equation (2.14)

F4(z, α) =
∏
i

(1− zλ2i )

[
1+

∑
j

zλ2j

1− zλ2j
f2j (2α)

∫ 2α

0
f2j (φ) dφ

]
= F+(z, 2α)

[
1

2
+ 1

2

F−(z, 2α)

F+(z, 2α)

]
. (4.7)

The final result is

F4(z, α) = 1
2[F+(z, 2α)+ F−(z, 2α)] (4.8)

which is equation (1.21).
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5. Conclusion

New proofs of the known equations (1.20) and (1.21) are given. They, along with equations
(1.1) and (1.15)–(1.18), relate the spacing functionsEβ(r, t) for β = 1, 2 and 4. The
known equation (2.14) and a new one (2.23) relating odd and even spheroidal functions are
recovered. Equations (1.20) and (1.21) along with Painlevé equations have been useful to
derive the asymptotic behaviour [4] of the spacing functionsEβ(r, t) among others.
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